
On Discovering Data
Preparation Modules
Using Examples

Khalid Belhajjame, PSL, Paris-Dauphine University
kbelhajj@gmail.com

PROVENANCE WEEK 2020

Data
Preparation

Despite the impressive body of work in the field of data preparation,
there is no single generic one-shop-stop solution that can be utilized
by the scientists to prepare their data prior their analysis.

Data preparation tasks are numerous, can be difficult to generalize.

Scientists tend to develop their own program/script using their
favorite language, e.g., Python, R or Perl, to prepare their data.

To overcome the above problem, several researchers have been calling
for the creation of repositories dedicated to scientific modules in
general, such as Bio.Tools and Galaxy Tools, and data preparation tasks
in particular, e.g., BigGorilla

PROVENANCE WEEK 2020

Problem Investigated
Given a repository of data
preparation modules, how can
we assist scientists in their
exploration and discovery ?

Repository of Modules

Data Examples

PROVENANCE WEEK 2020

Data Example

Describes >

PROVENANCE WEEK 2020

Research Problem 1
How to select/generate the data examples that
characterize modules ?

Repository of Modules

PROVENANCE WEEK 2020

[1] K. Belhajjame, On characterizing scientific modules using data examples, in the proceeding of EDBT, 2014.

Using modules’ metadata and retrospective provenance of the
modules’ executions [1]

Research Problem 2
How to explore/discover modules using data examples?

Module Discovery
§ To discover a module, a user can provide data examples that characterize the module
§ specifying data examples that characterize the desired module can be time-consuming

§ Instead, we make use of metadata (semantic annotations) to help the user narrow down the candidate
module that need to be explored.
§ In particular, the user specify the domain of the input and output of the desired modules.

§ The user then examines the data examples of the candidate modules and specifies the ones that meet the
expectations and the ones that do not by labelling the data examples.

PROVENANCE WEEK 2020

Fig. 3: Data examples and user feedback.

to locate. The modules with inputs and outputs that are compatible with the specified
semantic domains and structural types are then located. Consider, for example, that the
user is interested in locating a module that consumes input values that belong to the
semantic domain ci and structural type ti, and produces output values that belong to
the semantic domain co and structural type to. A module m meets such a query if it has
an input (resp. output) with a semantic domain and structural type that are equivalent to
or subsumed by ci and ti (resp. co and to). Specifically, the set of modules that meet
those criteria can be specified by the following set comprehension:

{m s.t. (9 i 2 inputs(m), (sem(i) v ci) ^ (str(i) v ti))
^ (9 o 2 outputs(m), (sem(o) v co) ^ (str(o) v to))}

It is likely that not all the modules retrieved based on the semantic domain of input and
output parameters perform the task that is expected by the user. Because of this, we
refer to such modules using the term candidate modules.

To identify the candidate module(s) that perform the task expected by the user, the
data examples characterizing candidate modules are displayed to the user. The user
then examines the data examples and specifies the ones that meet the expectations,
and the ones that do not. To do so, the user provides feedback instances. A feedback
instance uf is used to annotate a data example, and can be defined by the following
pair uf = h�, expectedi, where � denotes the data example annotated by the feedback
instance uf, and expected is a boolean that is true if � is expected, i.e., compatible
with the requirements of the user who supplied uf, and false, if it is unexpected.
3.2 Incremental Ranking of Candidate Modules

The discovery strategy we have just described can be effective when the number of
candidate modules and the number of data examples characterizing each candidate are
small. If the number of candidate modules to be annotated and/or the number of data
examples used for their characterization are large, then the user may need to provide
a large amount of feedback before locating the desired module among the candidates.
Moreover, there is no guarantee that the set of candidates is complete in the sense that
it contains a module that implements the behavior that meets user requirements. There-
fore, the user may have to annotate a (possibly) large number of data examples only to
find out that none of the candidates meet the requirements. Because of the above limi-
tations, we set out to develop a second discovery strategy with the following properties:

1. Ranking candidate modules: Instead of simply labeling candidate modules as
suitable or not to user requirements, they are ranked based on metrics that are
estimated given the feedback supplied by the user, to measure their fitness to re-
quirements. In the absence of candidates that meet the exact requirements of users,
ranking allows the user to identify the modules that best meet the requirements
among the candidate modules.

Issues that needs to be addressed
• How to reduce the number of data examples that need to be displayed to the
user?

• A module that meets the behavior expected by the user may not exist in the
repository.
• What is the module that meets best user needs?
• Module Ranking

PROVENANCE WEEK 2020

On Discovering Data
Preparation Modules
Using Examples

Khalid Belhajjame, PSL, Paris-Dauphine University
kbelhajj@gmail.com

PROVENANCE WEEK 2020

